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Traffic Flow Confidentiality (TFC) mechanisms are techniques devised to 

hide/masquerade the traffic pattern to prevent statistical traffic analysis at-

tacks.. Their inclusion in widespread security protocols, in conjunction with 

the ability for deployers to flexibly control their operation, might boost their 

adoption and improve privacy of future networks. This paper describes a TFC 

protocol integrated, as a sub-layer, in the IPsec Encapsulated Security Payload 

(ESP) protocol. A Linux-based implementation has been developed, support-

ing a variety of per-packet treatments (padding, fragmentation, dummy packet 

generation, and artificial alteration of the packet forwarding delay), in an eas-

ily combinable manner. Experimental results are reported to demonstrate the 

flexibility and the effectiveness of the TFC implementation. 

Introduction1 

Extensive literature work demonstrates that the traffic pattern generated in a 

communication carries plenty of information, which can be gathered through spe-

cially devised “statistical traffic analysis attacks”. These attacks operate irrespective 

of the deployed encryption means, and allow to extract, from the statistical analysis 

of the generated packet sizes and of their inter-arrival times, valuable confidential 

information such as the employed applications [1], the application layer protocols 

[2], the physical devices used [3], or the web page accessed [4,5]. To perform these 

attacks, a signature for the protocol or the web site to be recognized is typically pre-

computed as a set of statistical parameters describing packet size and/or packet inter-
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arrival time distributions. Flow classification can be performed by matching the 

actual statistics with the pre-stored signatures. Quite interestingly, accurate flow 

classification may be obtained even by looking only at its very first packets [2,6]. 

Statistical traffic analysis attacks have been also employed for the purpose of 

breaching security (such as for gathering password transmitted over encrypted 

sessions [7,8]), and for performing passive [9] or active [10] attacks to anonymiza-

tion (Mix) networks,  aimed at uncovering the identity of the communicating parties. 

To duly protect the privacy of the users, "Traffic Flow Confidentiality" (TFC) 

mechanisms devised to alter or mask the statistical characteristics of the traffic 

patterns are necessary.  

The contribution of this paper is twofold. First, we propose a TFC approach em-

bedded as a sub-layer (and a separate, self-contained, TFC protocol) of IPsec. We 

believe that the inclusion of TFC mechanisms in existing and widely deployed 

standards may significantly improve their adoption. Second, our approach is not 

bound to provide a “specific” traffic masking pattern, but rather aims at providing a 

flexible platform, endowed with a set of packet treatment primitives (including 

packet padding, fragmentation2, dummy packet generation, and artificial alteration of 

the packet forwarding delay, upon which the system deployers may easily configure 

the traffic masking patterns they deem more appropriate for achieving a given 

privacy/performance trade-off. 

To the best of our knowledge, our approach differs from most of the existing lit-

erature in this field as i) it is deployed as a separate module, rather than integrated in 

a specific Mix-like solution [11,12,13], and ii) it is developed as a flexible suite of 

easily composable tools rather than as a pre-programmed specific traffic masking 

technique (for instance, the frequently employed traffic CBR-ization, i.e. transform-

ing traffic into continuous bit rate pattern composed of packets with maximum size). 

The TFC protocol and the related packet treatment tools are implemented in Linux as 

part of the packet transformation framework introduced in the 2.6 kernel. 

TFC sub-layer design and implementation 

To overcome the drawbacks of the (limited) TFC mechanisms specified in the 

latest version of the IPsec Encapsulated Security Payload specification [14], we have 

designed TFC as a separate sub-layer, thus maintaining backward compatibility with 

traditional IPsec implementations.  The TFC sub-layer is implemented through a neat 

separation between i) the TFC control logic, namely the algorithms devised to 

transform a traffic pattern into another one, ii) their protocol support, accomplished 

through the specification of a TFC header, and iii) the set of basic mechanisms 

 
2 Indeed fragmentation is a technique traditionally neglected as a tool for traffic masking, as most of the 

approaches proposed in the past in fact are based on traffic padding and/or dummy packet generation. 

Conversely, we believe that fragmentation is a highly effective tool as i) it has a very low overhead if 

compared with padding or dummy packet generation, and ii) it may be selectively employed on the 

packets, such as the very first in the flow [1,5,6], which are found to provide most of the information 

useful for the classification algorithms. 
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employed by this control logic to modify characteristics at the packet level. Basic 

TFC mechanisms can be conveniently categorized as follows: 

a) Packet forming: devised to alter the packet size; they include packet padding, 

packet fragmentation, and packet aggregation (multiplexing); 

b) Dummy packet management: devised to generate and discard dummy packets, in 

order to alter the traffic pattern; 

c) Packet timing: devised to alter the forwarding latency of packets adding extra 

per-packet delay. 

Our TFC implementation is developed inside the Linux Kernel 2.6, and leverages the 

XFRM framework [15] deployed for integrating the TFC processing in the IP/IPsec 

networking stack3. Being developed as a sub-layer, the TFC protocol takes advantage 

of all the existing ESP functionalities (confidentiality, data integrity and authentica-

tion, as well as Security Association and policy management). 

Packet Forming 

To support the three packet forming mechanisms, we have designed an IPsec 

Header Extension, the TFC Header (Figure 1), for the encapsulation of the datagram. 

The TFC header is internal to the IPsec ESP payload, and it conveys the necessary 

information to restore the original packet (padding removal, reassembly, de-

multiplexing). A next header code should be reserved in the ESP trailer to indicate to 

the receiver that the protocol contained in the ESP payload is TFC: in our experi-

mentation we used the value 253, reserved by IANA for experimentation and testing. 

The next header field in the TFC header identifies the protocol carried in the pay-

load. 

Packet padding is the traditional (albeit naïve4) approach to alter the packet size 

statistics. The TFC header manages padding simply by explicitly carrying the packet 

 
3 

In additional details, TFC, just like other IPsec security services, is managed through Security Associa-

tions, i.e. we have developed a new Security Association type for TFC similarly as what done for the 

ESP and AH SAa. This allows controlling TFC through standard security policies included in the IPsec 

Security Policy Database (SPD). We use the Netlink interface and XFRM SA and SP databases to 

implement these features. For additional implementation details, please refer to the Discreet Project 

Deliverable D3102 – available upon request from the authors. 
4 Indeed, statistics taken on real IP flows show a high variance in the packet size, and thus padding to the 

maximum possible size introduces a massive overhead. Moreover, studies such as [1,5,6] seem to imply 

that most of the traffic classification mechanisms use the size information contained in the first few 
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Figure 1: TFC header format 
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payload size information in a dedicated field in the TPC header. We point out that 

this allows overcoming the significant drawback of the “implicit” padding function 

proposed in the current version of IPsec, which impedes its usage for inner protocols 

which do not provide an explicit indication of the payload size (e.g. TCP). 

Packet fragmentation allows splitting a large packet into smaller packets, and 

hence avoids the need to add a very large amount of per-packet overhead in the 

presence of many small packets and a few large ones. We support fragmentation by 

reusing the IPv6 fragmentation header inside the TFC header. Fragments are 

reassembled at the end of the overlay link, before the packet is handed to upper 

protocols. 

Packet aggregation allows multiplexing packets into a bigger datagram, thus in-

creasing the size of the packet through useful information and not through wasted 

padding bytes. Packet multiplexing is supported by introducing a flag in the TFC 

header. If this flag is set, after the defined length of the payload, another TFC header 

and payload follows instead of padding. With this mechanism, several payloads 

(even fragments) can be transferred in one datagram. 

Finally, the TFC header is also exploited to deliver a field, called TOCT (Type of 

Confidentiality Treatment) which enables to carry information about the type of 

treatment the packet may be subjected to, when multiple IPsec links are used in a 

multi-hop fashion, and especially for building IPsec-based Mix Networks. For 

reasons of space this operation is not described in this paper. 

Dummy Packets 

The use of dummy (artificially generated) packets is frequently referred to as 

“traffic padding”. It allows filling traffic gaps and avoids disclosing inactivity 

periods (i.e., provide unobservability). Moreover, dummy packets are a powerful 

instrument to alter the traffic pattern statistics, especially when real packets, due to 

quality of service constraints, cannot be delayed to an extent that allows proper 

reshaping of the traffic profile. Finally, dummy packet generation is a technique 

extensively employed in Mix Networks to counteract correlation and several types of 

active attacks (e.g., the “n-1” attack). 

Protocol support for dummy packet management is straightforward, setting the 

next header code to "dummy". In our implementation the value 59 is employed, as 

this value has been standardized in the IPsec ESP specification. For a more homoge-

neous implementation of the TFC tools we use the dummy packet value 59 inside the 

inner TFC header, rather than inside the ESP trailer. 

Packet Timing 

Information extracted from packet inter-arrival times is a usual source for statis-

tical traffic analysis methods [1,5,10]. To counter these attacks, scheduling algo-

rithms (externally programmed in the “control logic” module discussed next - see 

Figure 2) should alter the forwarding time of packets.  

                                                                              
packets of a session which are those that convey the protocol fingerprint, making it less important to 

`heavily' pad subsequent traffic. 
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Our implementation supports two methods to alter the packet delays. A first 

“event-driven” method allows a packet, upon its arrival (top arrow in Figure 2), to be 

associated with a specific, possibly packet-dependent, delay. The packet is then 

delivered inside the TFC module queues5 only when the associated timer elapses. A 

second “timer-driven” method allows de-queuing packets stored inside the TFC 

module queues at scheduling instants computed according to an algorithm controlled 

by the Control Logic module. Note that in the case queues are empty, a dummy 

packet will be de-queued from the dummy packet buffer and delivered.  

Implementation complexity is delegated to the control logic implementation, as 

packet delivery is internally accomplished through appropriate setting of standard 

Linux timers which drive the invocation of a de-queuing primitive. Trivial methods, 

such as fixed or random packet clocking, may be easily replaced by adaptive clock-

ing algorithms which explicitly take into account the status of the queues and the 

related congestion level (although, to the date of writing, the effectiveness of such 

adaptive approaches in terms of performance/privacy gains and trade-offs is still to 

be assessed). 

Control Logic 

The "intelligence" of the system is implemented in a separate "control logic" 

module, which can combine the TFC basic mechanisms arbitrarily. For the time 

being, in order to provide flexibility, we have implemented batching, CBR (Continu-

ous Bit rate), random padding, and random delay algorithms. The ease of such 

implementation shows the flexibility of the proposed framework, as well as its 

amenability to implement new algorithms.  

We believe that a significant asset of our work is the accomplished decoupling 

between the algorithmic logic devised to masquerade/shape the traffic pattern, and its 

 
5  Multiple queues may be internally deployed to differentiate packets incoming from different streams, 

where a stream may be defined either as a classification rule on the incoming packets, and/or in depend-

ence of the different TFC Security Association mapped over the same IPsec ESP Security Association 

(for reasons of space, details are omitted).   
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Figure 2: TFC module architecture 
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underlying implementation as a set of basic tools. This decoupling allows the net-

work deployer to configure (or eventually directly program in the control logic) the 

most appropriate TFC algorithm suited for its purposes. For instance, in an anonymi-

zation network such as Tarzan [13] (which may be built on top of IPsec tunnels 

extended with the proposed TFC functionalities) the user activity is “well known” 

but it is necessary to modify the flow fingerprint in order to avoid correlation attack. 

Conversely, in a point to point connection (e.g., user to proxy) the main goal is to 

avoid protocol or web site fingerprinting, which may be more adequately countered 

with different masking algorithms.   

Demonstration 

To demonstrate the flexibility of the TFC protocol, we set up a test environment 

(Figure 3) similar to the one used in [5] and [16]. We analyze how the information 

content of fingerprints can be reduced, while performance degradation remains 

limited. 

A client downloads web pages from a normal, unmodified web server (we use 

http://www.ist-discreet.org and https://www.prime-project.eu/ for our experiments). 

To protect against traffic classification attacks, the client creates an IPsec protected 

tunnel to an exit node. Two ESP SAs and two TFC SAs are set up to cover the traffic 

of the bi-directional communication. Throughout our tests, we were using symmetric 

configuration for the SAs, but of course parameters (as well as the control logic) 

used in the two directions may differ.  

The client downloads a full web page, with all of its inline images, using the wget 

program. We record traces of the packets traveling on the tunnel. We do not consider 

crypto analysis, therefore, according to our model, the only useful information for 

the attacker are: the packet length, packet time (and packet inter-arrival time) and the 

packet direction. 

Figure 4 shows typical unprotected and protected packet size and packet inter-

arrival time fingerprints, based on packet cardinality. It can easily be seen how 

information is removed from such fingerprint: padding and fragmentation makes 

packet size useless, while timing removes large part of the information contained in 

packet inter-arrival times.  

IPsec tunnel: ESP + TFC

Web browser

(wget)
Linux router, providing:

Tunnel termination (ESP, TFC), NAT

Standard web server

 
Figure 3: Test setup 
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How much protection this gives? Figure 5 shows the answer: packet counting 

and packet number based algorithms (such as [2,5,16]) can be fooled without ran-

domization and without dummy traffic. However, looking at the figure, it can easily 

be seen that (using the same browser application) the traffic pattern mapped into the 

"cumulative length" - "elapsed time" space remains characteristic of the site. 

The figure also shows results achieved with dummy packets using a CBR control 

logic. We should emphasize that here we show only the simplest use of dummy 

packets. We are investigating other dummy strategies as well as the effect of ran-

domization. 

Figure 5 shows the performance drawback of each control logic as well. The end-

point of each line shows the overhead in user perceived page download time and in 

traffic amount. For example, without TFC, the Discreet page downloads in 1.3 

seconds and generates 88 Kbytes of traffic. The same download with CBR TFC 

takes 4.7 seconds and 130 KBytes (to improve readably, we did not report the whole 

curve for CBR TFC for the Prime site: it took 15.5 seconds and 422 Kbytes).  It can 

be seen that the overhead remains in reasonable limits for each of the algorithms.  

Conclusions 

As shown by many recent papers, statistical traffic analysis techniques provide 

good results based on packet size and packet inter-arrival time statistics. We have 

designed the TFC IPsec security service to protect against such attack, discussed its 

implementation and demonstrated its effectiveness. 

Our approach gives a further level of protection, as masking performed at the IP-

sec layer impedes reconstruction of application-layer message size. It also introduces 

fragmentation, aggregation and packet inter-arrival time variation to balance the 

protection-performance tradeoff. 

Our future work includes the evaluation of different (deterministic and stochastic, 

traffic independent and adaptive) control logics.  

 
Figure 4: Packet size and inter-arrival time fingerprints, obtained by downloading the 

Discreet page with different TFC control logics. Control logics used are: padding or 

fragmentation to a fixed size; padding or fragmentation to a random size; timing of 

packet transmission to release at most one packet in timeslots of 4ms 
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Figure 5: Download of different web pages using different control logics 


