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Abstract. In recent years, a handful of anonymity metrics have been proposed
that are either based @i the number participants in the given scenafiip,the
probability distribution in an anonymous network regarding which participant is
the sendetreceiver, or(iii) a combination thereof. In this paper, we discuss el-
ementary properties of metrics, and evaluate the behavior of a recent anonymity
metrics in a set of application scenarios. Then, we define criteria for anony-
mity metrics and show than none of the studied metrics fulfill all criteria. Lastly,
based on previous work on entropy-based anonymity metrics, we propose a new
metric designed to fulfill these criteria — the so-called scaled anonymity set size.

1 Introduction

Anonymitycan be defined as “the state of being not identifiable within a set of sub-
jects, the anonymity set” [7]. Anonymity both involves preserving the confidentiality
of user data (data level anonymity) and hiding with whom a user is communicating
(communication level anonymitygender anonymitsneans that a message cannot be
linked to the sender, whileeceiver anonymitymplies that a certain message cannot
be linked to the receiver of that message [7]. In this paper, we limit our scope to sender
anonymity, although most ideas are also valid for receiver anonymity.

This paper discussemonymity metricswhich can be applied to measure the de-
gree of anonymity in a certain scenario. State-of-the-art metrics are normally based on
either(ii) the number participants in the given sceng(iip the probability distribution
in an anonymous network regarding which participant is the s¢mdeeiver, oiii)

a combination thereof. In this paper, we first discuss the basics of measurements and
anonymity metrics. Then, a basic model of anonymity attacks is proposed and some
recent anonymity metrics are introduced. After this, we define a set of “typical” sce-
narios for anonymous communication, and then quantify the degree of anonymity in
these scenarios using the earlier introduced metrics. On the basis of this evaluation —
and taking elementary properties of each anonymity metric into account — we there-
after propose a set of criteria that an anonymity metric should fulfill and assess whether
the studied anonymity metrics fulfill these criteria. In the scenarios, the Crowds system
[9] is used — a theoretically well studied protocol that is easy to understand.

A subsequent result is that, although some metrics fulfill most criteria, there is none
that fulfill all criteria. Using existing entropy-based metrics [3, 10] as a starting point,
we thereafter propose and evaluate an adapted entropy-based metric that better fulfills
the stated criteria. We denote this metric #taled anonymity set size
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2 Preliminaries

2.1 Introduction to Crowds.

Later, four scenarios are presented that useCtiosvds systers an anonymous com-
munication mechanism based onfli@forwarding through virtual paths. The anony-
mity set is denoted arowd, and all users in the crowd runjando application. In
addition, ablenderapplication administrates user membership. Path in Crowds are
created randomly: first, a user extends to path to a random jondo, which, in turn, flips a
biased coin (based on the probability of forwardipg) to determine whether the path
should be ended, or extended to another jondo (which repeats the same procedure).

2.2 A Model for Anonymity Attacks

An anonymity attaclentails a attackefd trying to uniquely map a useyx in the ano-
nymity setld = {ug, Uy, ..., U} to an observed sender by gathering knowledge about the
system, the user baganonymity setl{ and the sender. These entities have attributes
that can be modeled as sets of attribute typatues. The system has attributes such as
a = (application “Crowds”) anda; = (pr, %). One essential attribute in the system is
the distribution® containing{ps, p2, . . ., Pn}, & vector such thah denotes the proba-
bility that u; is the sender for each communicatidii.has attribute sets about its users
(or their devices), such & = {name "Alice” } anda; ={IP, 19216810.20}. Lastly,

the sender initially has only attribute types (same type#{ssbut no values. Using
this terminology, a strategy for an anonymity attack can be described as follows:

1. Initially, A can be assumed to know at least the public parameters of the system
and some information about the userszift* A initially possess no knowledge
about the sender. This entails that the distribugiois initially uniform;

2. Now, A’s objective is to either passively observe or actively trigger events to learn
information about the sender. The triggering can be accomplished using arbitrary
active attacks, such as predecessor [13], intersection [8], or Sybil attack j3]. If
is successful, the events may enable him to learn one or more attribute values of
the sender’s attribute types, or at least restrict the corresponding value domains;

3. Then,A analyzes the collected attribute values of the sender, together with the
attributes of the system and the userslin A’s objective is to calculate a new
(less uniform)?’. The way#”’ is calculated varies from scenario to scenario; in
this paper we base our calculations on the internal structure of Crowds [9];

4. A’s goal is to map a single user # to the sender. Depending @, there are
three possible next step@} if any of A's resources are exhausted, he f4i3;if
#’ does not single out as the sender with a specifically large likelihood, repeat step
two; and(iii) if there is ap; € £’ that is close or equal to 1, the attacker succeeds.

When assessing a system’s resistance against anonymity attacks, an analyst can
simulate these steps. In step three, the analyst can use an anonymity metric to de-
termine the degree of anonymity. In the next section, we thus discuss the basics of
measurement and anonymity metrics, and give examples of anonymity metrics.

1 Compare for example with the information distributed by the Blender in Crowds [9].
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2.3 Anonymity Metrics

The Basics of MeasurementsMeasurementan be defined as “a mapping from the
empirical world to the formal, relational world. Consequentlpy@asurds the number

or symbol assigned to an entity by this mapping in order to characterize an attribute”
where “the real world is thelomainof the mapping, and the mathematical world is
therang€' [6]. One important rule is theepresentation conditiowhich asserts that

“a measurement mapping must map entities into numbers and empirical relations
into numerical relations in such a way that the empirical relations preserve and are pre-
served by the numerical relations” [6]. Lastlyyreetricis a standard of measurement.

Introduction to Anonymity Metrics. An anonymity metric is a mapping from the
empirical world (the domain) to the mathematical world (the range), where numbers
or symbols are assigned to entities in a system to describe the degree of anonymity:
(i) thedomainis the knowledge of the attacket about the studied entities in the real
world — the system and its anonymity geét= {uy, Uy, ..., U,}. The attackerA is often a

model defined to test the resistance of a system against anonymity attacks. The system
can both be a real world instance or a theoretical mddgtherangeis the mapping of

an attribute in the real world to a mathematical system. Here, there are many options, as
different anonymity metrics useftérent units for presenting the degree of anonymity;

(iif) themappingitself can be seen as a function behaving according to set of rules. An
important parameter in the mapping is the probability distribuffoa {p1, p2, ..., Pn}

among the users &/ regarding which user is the sender in a communication.

Examples of Anonymity Metrics. Below, we introduce some of the most notorious
anonymity metrics that have been proposed in recent years.

— Anonymity set sizex classic degree is the size of the anonymity|8ét= n (anony-
mity set concept first used in [2]). Alteratively, this can be specifiddggn) [1];

— Crowds-based metridn this metric (initially developed for Crowds, but has since
been used in other contexts), the degree of anonyfiigymeasured on a continuum
between Ofrovably exposed) and 1 gbsolute privacy), wereA = 1-p; [9]. The
continuum includes the intermediary poinggssible innocence: p; thatuy; is not
the sender is non-negligible, thps > 0 + 6, where the thresholé > 0. Hence,we
getA=1-p = p > 0+ §; probable innocence: pj thaty; is the sender is less
than 12, thusA > 1/2; andbeyond suspicion: U; is hot more likely than any other
uj € U to be the sender, and thds= max{Aq, Ao, ..., A, ..., Ay} amongl.

— Source-hiding propertyhere,® is defined as the greatest probability you can assign
to any usewn; of being the sender of a message, tBus max(P) [12]. Naturally,®
varies betweer% and 1, where in this case = % denotes maximum anonymity;

— Entropy-based metricdn Serjantoy Danezis’s metric [10], “the féective anony-
mity set size”S is defined as the uncertainty(#) regarding which user it/
sent a message. Using Shannon’s theories on entropy [11]), W& geH(P) =
- YL, pilogz(pi), where 0< H(P) < logy(n). Diazet al. [3] instead calculate the
degree of anonymitgl as H(”). Here d varies between 0 and 1. Bahandd output

) loga()* . ) R
a maximum degree of anénymny wh@hequals the uniform distribution.
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2.4 Measuring the Uniformness of Probability Distributions

To study how an anonymity metric behaves when the probability distrib@ticimange,

a functiond(, U) is needed, where the parameteis the uniform distribution. Such

a functiond(#, U) should by some means quantify the distance (or quotient) between
# andU. There are several alternatives t{°, U), such agl(?,U) = H(U) — H(P)
ord(P,U) = %. Another option that we think could be used as well is to calculate
thed(®, U) as the Euclidean distancerirspace, according to the following:

d(P,U) = 4| > (P - u? (1)
i=1

Here,u is the probability assigned to each user wiis the uniform distribution
(that is,%, assumingn users). Intuitively, Equation (1) outputs the ordinary distance
between the two point® andU when they are plotted in anrdimensional space.
Equation (1) varies between 0 (wh#nh= U) and (%) (when there is g in P
such thatp, = 1). Forn — oo, the term(m)l/2 approaches 1.

n2

3 Evaluation of Anonymity Metrics

3.1 Example Scenarios

This section evaluates the degree of anonymity in a set of example scenarios using
Crowds[9]. The scenarios involves a user communicating with an external web server
through the Crowds network. The following parameters are varied in the scenarios: the
number of userg, the number of rogue usecgnote thatc is a subset ofi), andps:

In scenario ona) = 10,c = 1, andp; = 11/20;

In scenario twon = 1000,c = 10, andps = 11/20;
In scenario threay = 1000,c = 200, andp; = 11/20;
In scenario foum = 1000,c = 200, andps = 3/4.

Attacker Model. As Crowds does not provide anonymity against global observers or
eavesdroppers directly observing the sender, we omit these entities from the attacker
model, and instead only includg thec corrupted users an(d) the web server. In the
analysis, we assume that a corrupted user is succeeding the sender in the virtual path.

3.2 Anonymity Evaluations

Below, we evaluate the above scenarios against the metrics introduced in Section 2.3.
We provide the details of the calculations only for scenario one. For the entropy-based
metrics and the source-hiding property, we need the probability distribgtidtirom

the perspective of the corrupted usersp is {0.56, 24, 234 044 044 044 044 044

0'—5‘4,0}, while # from the perspective of the web server is uniform. The probability

p = 0.56 is calculated agy = TR0l _ 10:0558 _ 56 [g].
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— Anonymity set sizaéhe set size evaluates|tty| = 10 (orlogy(|U|) = 3.32 bits);

— Crowds-based metric: Against the web servertgyond suspicion, as all usersin
U are equally likely of being the sender. If expresskgs 1- p;, we getA = 1—90, as
pi that anyy; is the sender igl(—). Assuming that one of thecorrupted users succeeds
the usew; in the path A against the corrupted usergisssible innocence. This is
because the following inequality does not hold 9k ﬁ *(c+1). Instead, the
corrupted users can say wigh= 0.56 thatu; is the sender (i.eA = 1 - p; = 0.44);

— Entropy-based metricsaccording to Serjantg\Danezis [10], the #ective ano-
nymity set sizeS against the corrupted users is calculated &s= H(P) =
-3 (pi = logzpi) = 1.83477 ~ 1.83 bits. According to the metric proposed by
Diaz et al. [3], the degree of anonymityl is instead calculated as follows (using
H(P) from above)d = £k = 385415 ~ 0.55. Regarding the web serverid2 et
al.’s metric gives ugl = 1, asP is uniform, and for this reasod () = logz(n). Us-
ing Serjantoy Danezis’s metric, we get the followingfective anonymity set size:
S =H(P) = - ZL1(pi = 10ga(pi)) = 10 (3 = 10g,10) ~ 3.32 bits;

— The source-hiding propertyhe greatesp; the corrupted users can assign to any
is max@) = 0.56, and thu® = 0.56. Against the web serva®, = max(P) = %.

In Table 1, we list the degrees of anonymity for the above scenarios. For comparison,
we also includeld(P, U) according the the Euclidean distancenispace.

Table 1: Anonymity evaluation of scenarios (incl. Euclidean distance).

Scen. C corrupted users Web server

Anonymity| S1 |U| = 10/ 3.32 bits |'U| = 10/ 3.32 bits
set size S2-4 |U| = 1000/ 9.97 bits || = 1000/ 9.97 bits
Crowds- |S1 & S3| possible innocence beyond suspicion
based m. [S2 & S4| probable innocence beyond suspicion
Entropy- S1 S = 1.83 bits S = 3.32 bits
based S2 S = 6.37 bits S = 9.97 bits
metric S3 S = 5.23 bits S = 9.97 bits
(Serjantoy Danezis| ~ S4 S =6.75 bits S =9.97 bits
Entropy- S1 d=055 d=1
based S2 d=0.63 d=1
metric S3 d=052 d=1
(Diazet al) S4 d=0.68 d=1
Source- S1 0 =0.56 0=1/10
hiding S2 0 =0.46 6 = 1/1000
property S3 0 =0.56 6 =1/1000

S4 6 =0.40 © =1/1000
Euclidean-| S1 d(®, U) = 0.49 (max: 095) dp,U)=0
distancein|  S2 d(®,U) = 0.46 (max: 0995) d®,U)=0
in n-space| S3 d(®,U) = 0.56 (max: 0995) d®P,U)=0

S4 d(®,U) = 0.40 (max: 0995) dP,U)=0
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Some Observations from the Evaluation Results.

— All metrics except the anonymity set size metric consider probabilities;

— All metrics except anonymity set size scored higher against the web server than
against the corrupted usersgawas uniform from the perspective of the web server;

— Although stated in [10], we do not think that Serjant®anezis’s metrics reflect
the “effective anonymity set size” (as the endpoints do not overlap with those of the
anonymity set size metric). We also think that the max anonymity (giyestould
be made explicit. That is§ could be expressed &HP) out oflog,(n) bits;

— Against the corrupted users, most metrics yielded the highest anonyr§ity in

— d(®, U) according to the Euclidean distancenispace seems to be fairly alike mea-
suring distance based on entropy, although not exactly similar. Further analysis on
the deviation between thesefdrent measures of{#, U) is left as future research.

3.3 Criteria for Anonymity Metrics

As it is essential that an anonymity metric gives an accurate picture about the degree
of anonymity, we below state a set of criteria an anonymity metric should meet.

— A user can be said to be de-anonymized when an attacker can, beyond reasonable
doubt, pinpoint a user as the sender of a message (step three in Section 2.2). Thus,
the analyst must, in one way or another, consider probabilities;

= CI1: An anonymity metric should base its analysis on probabilities.

— The endpoints in an anonymity metric are “no anonymity” and “max anonymity”.
E.g., in metrics solely based @h max anonymity happens whéhis uniform, and
no anonymity occurs if there isg € # such thafp; >> max® — p;}. An anonymity
metric should model these two endpoints in a well defined and intuitive manner;

= C2: An anonymity metric must have well defined and intuitive endpoints.

— Intuitively, the more uniform thé, the more uncertain the attacker is. A metric
should preserve this relation (recall the representation condition [8]). Thus, a degree
of anonymity should increase if the uniformnessaihcreases, and vice verse;

= (3: The more uniform the distributioR, the higher the anonymity.

— Assuming a static degree of uniformnes$othe more the users it¥, the more the
potential senders, and thus the higher the uncertainty of the attacker. A metric should
preserve this relation according to the representation condition. Thus, the degree of
anonymity should increase if the number of users increases, and vice verse;

= (4: The more the users in the anonymity set, the higher the anonymity.

— By studying the degree of anonymity in a scenario, an analyst should be able to judge
where in between the two endpoints (no & max anonymity) the current degree is.
Thus, all values in the value domain of an anonymity metric should be well defined,;

= (5: The elements in the metric’s value domain should be well defined.

— An anonymity metric should use a scale that preserves the ordering among elements,
such as ordinal, interval, ratio, or absolute scale [8]. Moreover, the metric should be
fined-grained enough toftier between similar, but not equal, scenarios.

= (C6: The value domain of the metric should be ordered and not too coarse.

Next, we evaluate the aforementioned anonymity metrics against these criteria.
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3.4 Evaluation of Anonymity Metrics against Criteria
In Table 2, we assess whether the studied metrics fulfill the earlier stated criteria.
Table 2: Evaluation against criteria.
Anonymity|C1| - |Neither|U| = n norlog,(|U|) consider probabilities.
set size 2 As this is an absolute measure, the metric always outpuidich ca
metric vary between 1 ancb. Difficult to state a “good-enough” value for
C3| - |Not fulfilled, as this metric does not consider probabilities.
c4| + |Fulfilled, as the degree of anonymity|#| = n.
C5| + |nsimply entails the number of users in the anonymity [&t)(
C6| + |Fulfilled, as this metric uses absolute scale.
Crowds- lc1l + Fulfilled, as output correqunds directly tq the propability of being the
sender an attacker can assign to the sending user in a system.
based The metric varies betwegovably exposed aNdabsolute privacy, Where
metric €21 * leach intermediary category is semantically mapped to probabilitigs.
C3| - |[Not always true as individual probabilities are quantified.
In general fulfilled, assuming that the correspondpig> 0. Specifi
C4| + |cally, increasing helps fulfillingn > ﬁ # (C + 1) in the scenarios.
C5| + |Categories are based on the underlying probability of being the sender.
C6| - |Although ordinal scale is used, the output is fairly coarse.
Entropy- |Cl| + |Based on the entropy of the probability distribution.
based C2| - |The endpoints are 0 ardg,(n). The latter is hard to calculate by hapd.
metric 3| + [Fulfilled, if we assume@(®, U) = H(U) — H(P).
(seriantoypanezis| C4| +  |Fulfilled. Note that the maximum increases with an increasing
States that an attacker on average has to find the answe(fhinary,
o)+ guestions to identity the sender.
C6| + |[This criterion is fulfilled as ratio scale is used.
Entropy- |C1| + |Based on the entropy of the probability distribution.
based C2| + |Clear endpoints: 0 (no anonymity) and 1 (max anonymity).
metric  |c3| + |Fulfilled, if we assume(®, U) = :%’;.
(Diazetal) |C4| - |This criterion is not fulfilled, as the resultirtis normalized.
C5| + |Easy to interpret ad denotes the quotient betwekt{P) andH(U).
C6| + |This criterion is fulfilled as ratio scale is used.
Source- |C1| + |@ is directly based on the greatest probabilityfinas® = max).
hiding C2| - |The use of an inverted scale is somewhat confusing (best @as@®).
property | .| _ Although it can be expected to be true in many real scenarios, it may
not coincide as the output is merely an individual probability.
c4| + [Fulfilled, assuming corresponding > 0 for added users.
O is the max probability (of being the sender) any user in the anonymity
C5| + |set can be assigned of by the attacker. In real scenarios, it will prgbably
often overlap with the probability assigned to the real sender.
C6| + |[This criterion is fulfilled as ratio scale is used.

We can note in Table 2 above that there is no metric that fulfill all criteria.
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4 Proposal: Scaled Anonymity Set Size

In Section 3.4, we saw that no metric fulfilled all criteria. Thus, we propose a entropy-
based anonymity metrié that, in particular, avoids the following problen{s: in the

Diaz et al. metric, the number of users does not contributel,tand(ii) the Serjan-
tov/Danezis metric has nonintuitive endpoints. We propose to quahfy follows:

A= 2" 2)

Equation (2) grows with an increasing uniformity E{#) and varies between 1
(when there is ong; € P, wherep; = 1) andn (when® = U). SemanticallyA = 2H®)
can be explained as follows — given thé(P) denotes the average number of binary
guestions an attacker needs to find the answer to in order to identity the sender:

2H() is the number of possible outcomes given the expected amount of
binary questions the attacker needs to answer to identify the sender

For instance, iH(®) = 2, then 2'®) = 4, the possible outputs arg, 0}, {0, 1},
{1,0}, and {1, 1}. Equation (2) has a desirable property: the max vatyeoyerlaps
with the actual size of the anonymity set, while the min value (1) denotes a singleton
anonymity set, i.e. no anonymity. For this reason, we denote this metrisctiied
anonymity set sizén Table 3, we calculat@ for the four aforementioned scenarios,
while in Table 4, we evaluate the proposed metric against the aforementioned criteria.

Table 3: Degrees of anonymity for the scaled anonymity set size.

Scen C corrupted users Web server
Scaled S1 A =218 =36 (forn = 10) A = 2109110 = 10
anonymity S2 A = 2537 = 83 (forn = 1000) A = 210%2(1000) — 1000
setsize | S3 A = 2528 = 38 (forn = 1000) A = 21092(1000) = 1000
S4 A = 2575 = 108 (forn = 1000) A = 2109%:(1000) = 1000

In Table 3, we can note that the ordering among the scenarios accordiayty-
laps with that of the Serjantg\Danezis metric. However, we think that the linear scale
more clearly shows e.g. thatin scenario one is far lower than in the other scenarios.

Table 4: Evaluation of scaled anonymity set size against criteria.

Scaled |C1|+|Fulfilled, as this metric is based on probabilities.

anonymityC2 |+|Intuitive and well defined endpoints whekevaries between 1 and

set size |C3|+|This criterion is fulfilled asA is based on the uniformity .
+|Fulfilled, as max anonymity increases withmax(21(*)) = 2'0%("

A = 2"®) js the number of possible outcomes given the expected jnum-

ber of binary questions an attacker has to answer to identify the sender.

C6|+|Fulfilled, as the scaled anonymity set size metric uses ratio scale.

G5+

In Table 4, we can see that all criteria are fulfilled for the scaled anonymity set size.
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5 Summary & Outlook

In this paper we discussed elementary properties of anonymity metrics. We defined
a set of example scenarios using Crowds, and then quantified the degree of anony-
mity in these scenarios for some recent anonymity metrics. Based on this evaluation
and elementary properties of metrics, we then defined a set of criteria for anonymity
metrics. We then assessed whether these metrics fulfilled the earlier defined criteria.
Lastly, we proposed a new metric: the scaled anonymity set size, defided 88",

Future work includes further analyzing the scaled anonymity set size, as well as study-
ing the correlation betweenfirent ways of expressing the degree of uniformity in
probability distributions and their relation tofférent anonymity metrics.
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