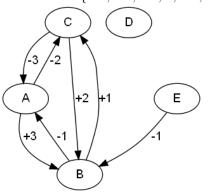
Design and Analysis of a Protocol for Anonymous Sociometric Questionnaires

Marián Novotný

Institute of Computer Science P.J. Šafárik University, Faculty of Science Košice, Slovakia

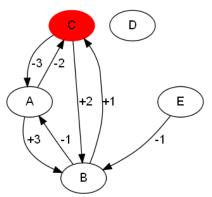
PrimeLife / IFIP Summer School 2009 – Privacy and Identity Management for Life

< □ > < 同 > < 回 > < 回

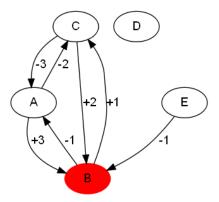

Introduction to Sociometry

- quantitative method for measuring social relationships (Jacob L. Moreno)
- can be used for management of a school class by a teacher or in a team-building
- is based on choices of individuals
- choices of responders are collected by a questionnaire from responders
- relations between individuals can be represented by a sociogram

くロト (過) (目) (日)

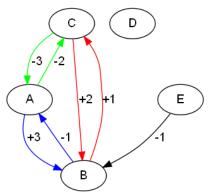

Representation of a Sociogram by Graph Theory

- weighted digraph G = (V, E), E ⊆ V × V, where each node represents one responder
- social link is represented as a weighted arc
- the weight function $w : E \rightarrow \{-s, \ldots, -1, 1, \ldots, s\}$


Node Characteristics – Indegrees

- positive indegree $deg^{ln^+}(C) = 1$
- negative indegree $deg^{ln^-}(C) = 1$
- indegree $deg^{ln}(C) = deg^{ln^+}(C) + deg^{ln^-}(C) = 2$

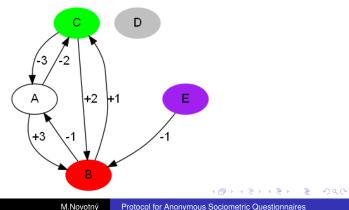
Node Characteristics – Weighted Indegrees


- positive weighted indegree $In^+(B) = 5$
- negative weighted indegree $In^{-}(B) = -1$

.⊒...>

Mutual Choices

- positive mutual choice
- negative mutual choice
- combined mutual choice



э

э


Individual Phenomena

- positive social status of $B \frac{ln^+(B)}{|V|-1} = \frac{5}{4}$
- Star *B* node with the maximal positive weighted indegree
- Outsider C node with the minimal negative weighted indegree
- Ghost D node with zero indegree and outdegree
- Isolate E node with zero positive indegree, is not a ghost

Collective Phenomena

- the set of positive M⁺(G), negative M⁻(G), combined M[±](G) mutual choices
- positive coherence of a group *G* is defined as

Security Requirements for the Scheme

- Eligibility only responders from the group are eligible to correctly fill in the questionnaire.
- Privacy choices of a responder must not identify the responder and any traceability between the responder and his choices must be removed.
- Verifiability responder should be able to verify whether his choices were correctly recorded, all valid choices of other responders were included and the counting process was accurate.
- Accuracy the scheme must be error-free. The final computation of sociometric indices must corresponds with all choices of all responders.

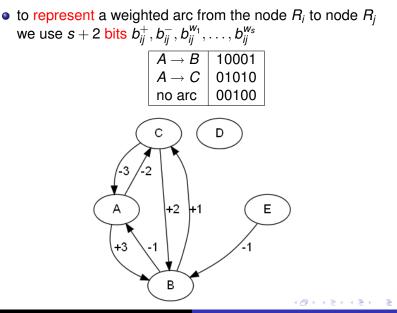
▲ 聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- used for encryption of responders choices
- semantically secure, additively homomorphic, allows us once to use multiplication
- threshold version (t, a) the private key is shared among a authorities
 - A ciphertext can be decrypted when at least *t* + 1 shareholders cooperate
 - the process of decryption is universally verifiable and does not reveal the secret key

ヘロト ヘアト ヘビト ヘビト

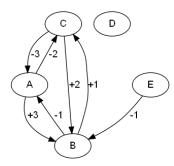
Homomorphic Properties of the Public-Key System

- given ciphertexts $C_1 = E_{Pk}(m_1), C_2 = E_{Pk}(m_2)$, anyone can create
 - $E_{Pk}(m_1 + m_2)$ by computing the product $C_1 \cdot C_2 = E_{Pk}(m_1 + m_2)$
 - $E_{Pk}(m_1 \cdot m_2)$ by computing the bilinear map $C_1 \star C_2 = E_{Pk}(m_1 \cdot m_2)$
 - $E_{Pk}(z \cdot m_1)$ by computing the exponentiation $C_1^z = E_{Pk}(z \cdot m_1)$


イロト イポト イヨト イヨト 三日

The Proposed Scheme – Registration, Key Generation

- for simplicity we assume that a trusted dealer first generates the public key *Pk* and the private key *Sk*, shares the private keys between *a* authorities and then deletes the private key
- registration of responders and questioner is based on digital signatures
- the questioner creates a questionnaire which contains obligatory properties
 - time for filing in, the list of responders with their unique identification, sociometric parameters such as the scale *s* for the weights of the arcs
- A responder using the application
 - authorizes by the questioner, downloads the parameters of the questionnaire
 - selects his choices
 - submits his selections encrypted under the key *Pk*


白 マイビマ イビット ビー うくら

The Proposed Scheme – Representation of Arcs

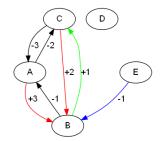
The Proposed Scheme – Encrypted Sociogram

	A	В	С	D	E
Α	_	E(1), E(0), E(3)	E(0), E(1), E(2)	E(0), E(0), E(1)	E(0), E(0), E(1)
В	E(0), E(1), E(1)	—	E(1), E(0), E(1)	E(0), E(0), E(1)	<i>E</i> (0), <i>E</i> (0), <i>E</i> (1)
С	E(0), E(1), E(3)	E(1), E(0), E(2)	_	E(0), E(0), E(1)	E(0), E(0), E(1)
D	E(0), E(0), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)		E(0), E(0), E(1)
Е	E(0), E(0), E(1)	E(0), E(1), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)	_

M.Novotný Protocol for Anonymous Sociometric Questionnaires

э

프 🖌 🛪 프 🕨


The Proposed Scheme – Verification of Submissions

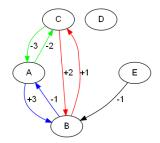
- to represent a weighted arc from the node R_i to node R_j we use s + 2 bits b⁺_{ij}, b⁻_{ij}, b^{w₁}_{ij}, ..., b^{w_s}_{ij}
- we need to verify, that
 - $b_{ij}^{\diamondsuit} \in \{0,1\} \equiv b_{ij}^{\diamondsuit} \cdot (b_{ij}^{\diamondsuit} 1) = 0$
 - $b_{ij}^+ \cdot b_{ij}^- = 0$ • $\sum_{k=1}^s b_{ij}^{w_k} = 1 \equiv \sum_{k=1}^s b_{ij}^{w_k} - 1 = 0$
- We use the homomorphic properties for preparing ciphertexts of equations
- The equations can by checked by shareholders by cooperatively-made decryptions
- to save on computation, we check at once a batch of equations

ヘロン 人間 とくほとくほとう

Computation of Characteristics of Nodes

	A	В	С	D	E	L
Α	_	E(1), E(0), E(3)	E(0), E(1), E(2)	E(0), E(0), E(1)	E(0), E(0), E(1)	1
В	<i>E</i> (0), <i>E</i> (1), <i>E</i> (1)	—	E(1), E(0), E(1)	<i>E</i> (0), <i>E</i> (0), <i>E</i> (1)	<i>E</i> (0), <i>E</i> (0), <i>E</i> (1)	
С	E(0), E(1), E(3)	E(1), E(0), E(2)	_	E(0), E(0), E(1)	E(0), E(0), E(1)	l
D	E(0), E(0), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)	_	E(0), E(0), E(1)	
Е	E(0), E(0), E(1)	E(0), E(1), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)		

$$\begin{split} & E(deg^{ln^+}(B)) = E(1) \cdot E(1) \cdot E(0) \cdot E(0) = E(2) \\ & E(deg^{ln^-}(B)) = E(0) \cdot E(0) \cdot E(0) \cdot E(1) = E(1) \\ & E(deg^{Out^+}(B)) = E(0) \cdot E(1) \cdot E(0) \cdot E(0) = E(1) \\ & E(ln^+(B)) = (E(1) * E(3)) \cdot (E(1) * E(2)) \cdot (E(0) * E(1)) \cdot \\ & E(0) * E(1)) = E(3 \cdot 1 + 2 \cdot 1 + 0 \cdot 1 + 0 \cdot 1) = E(5) \end{split}$$


→ E > < E >

3

< 🗇 🕨

Computation of the Mutual Choices

	A	B	C	D	E
A	-	E(1), E(0), E(3)	E(0), E(1), E(2)	E(0), E(0), E(1)	E(0), E(0), E(1)
В	E(0), E(1), E(1)	_	E(1), E(0), E(1)	E(0), E(0), E(1)	<i>E</i> (0), <i>E</i> (0), <i>E</i> (1)
С	E(0), E(1), E(3)	E(1), E(0), E(2)	_	E(0), E(0), E(1)	E(0), E(0), E(1)
D	E(0), E(0), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)		E(0), E(0), E(1)
E	E(0), E(0), E(1)	E(0), E(1), E(1)	E(0), E(0), E(1)	E(0), E(0), E(1)	

$$\begin{array}{l} \prod_{i=1}^{N} \prod_{j \in J_{i}} c_{ij}^{+} * c_{ji}^{+} & = \prod_{i=1}^{N} \prod_{j \in J_{i}} E_{Pk}(b_{ij}^{+} b_{ji}^{+}) & = \\ \prod_{i=1}^{N} E_{Pk}(\sum_{j \in J_{i}} b_{ij}^{+} b_{ji}^{+}) & = E_{Pk}(\sum_{i=1}^{N} \sum_{j \in J_{i}} b_{ij}^{+} b_{ji}^{+}) & = \\ E_{Pk}(|M^{+}|) \end{array}$$

M.Novotný Protocol for Anonymous Sociometric Questionnaires

э

э

- proposed a representation of a sociogram by a weighted digraph
- we designed the protocol for anonymous sociometric questionnaires
 - based on additively homomorphic public key cryptosystem, which allows us once to use multiplication
 - to compute local characteristics of nodes and the cardinality of sets of mutual choices
 - fulfils desired security requirements
- we are planning to formal analyze the scheme
- for a future design of the protocol looks promisingly recently announced fully homomorphic public key encryption scheme

ヘロト 人間 ト ヘヨト ヘヨト

Thank you for your attention

M.Novotný Protocol for Anonymous Sociometric Questionnaires

E ► < E</p>

э